Notebooks
O
OpenAI
Code Search Using Embeddings

Code Search Using Embeddings

Code search using embeddings

This notebook shows how Ada embeddings can be used to implement semantic code search. For this demonstration, we use our own openai-python code repository. We implement a simple version of file parsing and extracting of functions from python files, which can be embedded, indexed, and queried.

Helper Functions

We first setup some simple parsing functions that allow us to extract important information from our codebase.

[1]

Data Loading

We'll first load the openai-python folder and extract the needed information using the functions we defined above.

[2]
Total number of .py files: 51
Total number of functions extracted: 97

Now that we have our content, we can pass the data to the text-embedding-3-small model and get back our vector embeddings.

[3]

Testing

Let's test our endpoint with some simple queries. If you're familiar with the openai-python repository, you'll see that we're able to easily find functions we're looking for only a simple English description.

We define a search_functions method that takes our data that contains our embeddings, a query string, and some other configuration options. The process of searching our database works like such:

  1. We first embed our query string (code_query) with text-embedding-3-small. The reasoning here is that a query string like 'a function that reverses a string' and a function like 'def reverse(string): return string[::-1]' will be very similar when embedded.
  2. We then calculate the cosine similarity between our query string embedding and all data points in our database. This gives a distance between each point and our query.
  3. We finally sort all of our data points by their distance to our query string and return the number of results requested in the function parameters.
[4]
[5]
openai/validators.py:format_inferrer_validator  score=0.453
def format_inferrer_validator(df):
    """
    This validator will infer the likely fine-tuning format of the data, and display it to the user if it is classification.
    It will also suggest to use ada and explain train/validation split benefits.
    """
    ft_type = infer_task_type(df)
    immediate_msg = None
----------------------------------------------------------------------
openai/validators.py:infer_task_type  score=0.37
def infer_task_type(df):
    """
    Infer the likely fine-tuning task type from the data
    """
    CLASSIFICATION_THRESHOLD = 3  # min_average instances of each class
    if sum(df.prompt.str.len()) == 0:
        return "open-ended generation"
----------------------------------------------------------------------
openai/validators.py:apply_validators  score=0.369
def apply_validators(
    df,
    fname,
    remediation,
    validators,
    auto_accept,
    write_out_file_func,
----------------------------------------------------------------------
[6]
openai/validators.py:get_common_xfix  score=0.487
def get_common_xfix(series, xfix="suffix"):
    """
    Finds the longest common suffix or prefix of all the values in a series
    """
    common_xfix = ""
    while True:
        common_xfixes = (
            series.str[-(len(common_xfix) + 1) :]
            if xfix == "suffix"
            else series.str[: len(common_xfix) + 1]
----------------------------------------------------------------------
openai/validators.py:common_completion_suffix_validator  score=0.449
def common_completion_suffix_validator(df):
    """
    This validator will suggest to add a common suffix to the completion if one doesn't already exist in case of classification or conditional generation.
    """
    error_msg = None
    immediate_msg = None
    optional_msg = None
    optional_fn = None

    ft_type = infer_task_type(df)
----------------------------------------------------------------------
[7]
openai/cli.py:tools_register  score=0.391
def tools_register(parser):
    subparsers = parser.add_subparsers(
        title="Tools", help="Convenience client side tools"
    )

    def help(args):
        parser.print_help()

    parser.set_defaults(func=help)

    sub = subparsers.add_parser("fine_tunes.prepare_data")
    sub.add_argument(
        "-f",
        "--file",
        required=True,
        help="JSONL, JSON, CSV, TSV, TXT or XLSX file containing prompt-completion examples to be analyzed."
        "This should be the local file path.",
    )
    sub.add_argument(
        "-q",
----------------------------------------------------------------------